Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes
نویسندگان
چکیده
Here we present new applications for silicon nitride (SiN) membranes to evaluate biological processes. We determined that 50-nanometer thin films of SiN produced from silicon wafers were sufficiently durable to bind active rotavirus assemblies. A direct comparison of SiN microchips with conventional carbon support films indicated that SiN performs equivalent to the traditional substrate to prepare samples for Electron Microscopy (EM) imaging. Likewise, SiN films coated with Ni-NTA affinity layers concentrated rotavirus particles similarly to affinity-coated carbon films. However, affinity-coated SiN membranes outperformed glow-discharged conventional carbon films 5-fold as indicated by the number of viral particles quantified in EM images. In addition, we were able to recapitulate viral uncoating and transcription mechanisms directed onto the microchip surfaces. EM images of these processes revealed the production of RNA transcripts emerging from active rotavirus complexes. These results were confirmed by the functional incorporation of radiolabeled nucleotides into the nascent RNA transcripts. Collectively, we demonstrate new uses for SiN membranes to perform molecular surveillance on life processes in real-time. OPEN ACCESS Micromachines 2013, 4 91
منابع مشابه
Four-wire orthogonal structure for accurate measurement of fluid velocity and wind flow direction using silicon micro-machining on silicon nitride membranes
Microelectromechanical thermal sensors are one of the most accurate and important tools for measuring the direction and velocity of an acoustic wave and winds. Detection of wind direction and speed in different ranges has different applications such as meteorology, wind power plants, gas flow measurement in smart building and gas consumption of power plants. In this paper, a four wires sensor i...
متن کاملMolecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.
To achieve fast and selective molecular filtration, membrane materials must ideally exhibit a thin porous skin and a high density of pores with a narrow size distribution. Here, we report the fabrication of nanoporous silicon nitride membranes (NSiMs) at the full wafer scale using a versatile process combining block copolymer (BCP) self-assembly and conventional photolithography/etching techniq...
متن کاملNanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions.
We report the formation of POPC lipid bilayers that span 130 nm pores in a freestanding silicon nitride film supported on a silicon substrate. These solvent-free lipid membranes self-assemble on organosilane-treated Si3N4 via the fusion of 200 nm unilamellar vesicles. Membrane fluidity is verified by fluorescence recovery after photobleaching (FRAP), and membrane resistance in excess of 1 GΩ is...
متن کاملMICROSTRUCTURAL STUDY OF SILICON NITRIDE WHISKERS PRODUCED BY NITRIDATION OF PLASMA-SPRAYED SILICON LAYERS
plasma-sprayed silicon layers have been used to produce silicon nitride layers with fibrous microstructure which optimizes fracture toughness and strength. SEM examination of the specimens shows that the surface is covered by fine needles and whiskers of Si3N4.In order to study the oxygen contamination effect as well as other contaminants introduced during spraying and nitridation processes, su...
متن کاملNumerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)
In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 4 شماره
صفحات -
تاریخ انتشار 2013